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Motivation
Heterogeneous and Complex HPC Infrastructures

• HPC infrastructure too complex, humans are overwhelmed
• Complexity and scope increase the urgency

− New computational paradigms (AI/ML apps vs. BSP-style HPC)
− New architectural directions (e.g., IPU, RISC-V, data flow)
− Heterogeneity overall: node architectures, within the system, 

storage and parallel file system during application design 
(e.g., ML within HPC applications)

− New operations paradigms (e.g., cloud, container)
− Simplistic approaches to increasing compute demand result 

in unacceptable power costs

• Difficult for humans to optimally adapt applications to 
systems and to detect and diagnose vulnerabilities
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B. Settlemyer, G. Amvrosiadis, P. Carns and R. Ross, 2021. It’s Time 
to Talk About HPC Storage: Perspectives on the Past and Future, in 
Computing in Science & Engineering, vol. 23, no. 6, pp. 63-68.

Ciorba, F., 2023. Revolutionizing HPC Operations and 
Research. Keynote at HPCMASPA’23 Workshop.

Scratch/Burst Tier

Carns, P., 2023. HPC Storage: Adapting to Change. 
Keynote at REX-IO’23 Workshop.



Vision: From Data to Decisions
Holistic Monitoring for Intelligent HPC Operations

What We Need:
• Continuous monitoring, archiving, and analysis of 

operational + performance data
• Unified visibility into applications, system software, 

and hardware layers
Why It Matters:
• Enables automated feedback loops using AI/ML
• Supports dynamic workload & architecture analysis
• Powers adaptive, actionable responses
Goal: Efficient, explainable HPC operations driven by 
autonomous analyze-feedback-response loops
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Gentile, A., 2021. Enabling Application and System Data 
Fusion. Keynote at MODA’21 Workshop.

Ciorba, F., 2023. Revolutionizing HPC Operations and 
Research. Keynote at HPCMASPA’23 Workshop.

Dagstuhl Seminar 23171, 2023. Driving HPC Operations 
With Holistic Monitoring and Operational Data Analytics. 
https://www.dagstuhl.de/23171

Autonomous 
Loops

https://www.dagstuhl.de/23171


Diagnosing the Performance Trust Gap

Why current methods fall short
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Diagnosing the Performance Trust Gap
The Traditional Performance Optimization Cycle
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Performance Engineering Overview, https://doc.zih.tu-
dresden.de/software/performance_engineering_overview/
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Virtual Institute – High Productivity Supercomputing 
(VI-HPS), https://www.vi-hps.org/tools/tools.html

Example: Overview of the VI-HPS Tools

https://doc.zih.tu-dresden.de/software/performance_engineering_overview/
https://doc.zih.tu-dresden.de/software/performance_engineering_overview/
https://www.vi-hps.org/tools/tools.html


Diagnosing the Performance Trust Gap
Example: Parallel I/O Stack and its Performance Factors
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Diagnosing the Performance Trust Gap
Example: Status of I/O Characterization Tools

Blue Waters, Mira, and Theta popular Darshan 
log sources used for research:
• https://bluewaters.ncsa.illinois.edu/data-sets 
• https://reports.alcf.anl.gov/data/
• ftp://ftp.mcs.anl.gov/pub/darshan/data 

Open questions:
• How relevant are the logs to current systems?
• How do we know the integrity of the logs?

Community comments:
• “Darshan is one of the first tools to be deactivated in 

the event of I/O problems.”
• “Darshan cannot grasp the complexity of state-of-

the-art parallel storage systems.”

Building a Future of HPC Performance Engineering Rooted in Data, Tools, and Trust • ©Sarah M. Neuwirth • Johannes Gutenberg University Mainz 7

Snyder, S., 2022. Darshan: Enabling Insights into 
HPC I/O Behavior. ECP Community BoF Days.

Darshan I/O Characterization Tool

What are the implications of these 
questions and observations?

https://bluewaters.ncsa.illinois.edu/data-sets
https://reports.alcf.anl.gov/data/
ftp://ftp.mcs.anl.gov/pub/darshan/data


Diagnosing the Performance Trust Gap
Fragile Pipelines: Tool-Driven, Not Insight-Driven

Building a Future of HPC Performance Engineering Rooted in Data, Tools, and Trust • ©Sarah M. Neuwirth • Johannes Gutenberg University Mainz 8

• Siloed Tool Views: Each tool sees a layer. None explain the whole system.
=> In case of I/O: App-level profilers (e.g., Darshan) vs. system tools (LDMS, DCDB)

• Workflow Scripts Instead of Workflows: Custom scripts per experiment = unscalable, unrepeatable.
=> Benchmarking tools (e.g., iperf, sockperf) often require client/server logic incompatible with SLURM

• Discarded Insights: Performance data is ephemeral; models are not reused.
=> No structure for reuse → repeated effort, lost opportunities

Category Examples Srengths Limitations

Application-level Darshan, Recorder, 
Score-P Fine-grained function tracing No visibility into system-wide 

interactions

System-level LDMS, DCDB, 
TACCStats

Aggregated I/O performance 
metrics

Cannot correlate application 
performance with system metrics

End-to-end Ganglia, Nagios, 
Apollo

Holistic view of system 
utilization

Lacks deep profiling at kernel 
and network levels



Diagnosing the Performance Trust Gap
Why We Need to Rethink HPC Performance Engineering

Heterogeneous Architectures

Parallelism and Scalability

Diversity of Workloads

Dynamic Resource Allocation

Software Stack Complexity

Large-scale Data Movement

Benchmark Suitability
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Reproducible, Tool-Agnostic Workflows 
for Performance Insight

From ad hoc pipelines to robust, model-aware workflows

Building a Future of HPC Performance Engineering Rooted in Data, Tools, and Trust • ©Sarah M. Neuwirth • Johannes Gutenberg University Mainz 10



Reproducible, Tool-Agnostic Workflows 
Goal: Holistic & Automated Monitoring and Analysis Cycle
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Idea: Develop and implement standardized
and tool-independent approach for HPC
workload and application analysis
Goal: Establish a performance history 
database to categorize systems, workload 
behaviors, and characteristic patterns for 
different science domains

Zhu, Z., Bartelheimer, N. and Neuwirth, S., 2023. MAWA-HPC: Modular and 
Automated Workload Analysis for HPC Systems. ISC’23.

Bartelheimer, N., Zhu, Z., and Neuwirth, S., 2023. Toward a Modular 
Workflow for Network Performance Characterization. IPDPSW’23.

Zhu, Z., and Neuwirth, S., 2023. Characterization of Large-Scale HPC 
Workloads With Non-Naïve I/O Roofline Modeling and Scoring. ICPADS’23.



Reproducible, Tool-Agnostic Workflows
Reproducible Benchmarking and Measurement

• Benchmarking: Process of comparing system performance using standardized tests and metrics.

• Reproducibility: Ability to obtain the same results with the same system and test conditions.

• Importance of Reproducibility:
− Consistency: Enables fair and accurate comparisons between systems

− Confidence: Trust in benchmark results for decision-making

− Research Validity: Essential for scientific studies and product evaluations

• Key Principles of Reproducible Benchmarking:
− Documentation: Record hardware and software configurations, test settings, and data

− Version Control: Maintain consistent test suites and tools

− Automation: Minimize human error by automating test execution

− Standardization: Use industry-standard benchmarks and metrics

− Multiple Runs: Conduct tests multiple times to verify results
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Reproducible, Tool-Agnostic Workflows
Reproducible Benchmarking: Integration is Key
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Schifrin, A., 2023. Automated Performance Characterization of 
HPC Systems. Bachelor thesis, Goethe University Frankfurt.

Zhu, Z., Wang, C. and Neuwirth, S., 2025. Advancing HPC 
Performance Modeling with an Interactive, Automated and 
Tool-Agnostic ML-Driven Workflow. SSDBM’25. (to appear)

Bartelheimer, N. and Neuwirth, S., 2023. Toward 
Reproducible Benchmarking of PGAS and MPI 
Communication Schemes. ICPADS’23.

Repeatability Comparability Modularity

• Ensures consistent results 
from the same setup

• Builds trust in 
computational outcomes

• Forms the basis for 
scientific validation

• Standardizes benchmarking 
across models or methods

• Allows fair evaluation of 
new approaches

• Helps identify performance 
trade-offs

• Enables flexible software 
architecture

• Facilitates integration of 
AI/ML components

• Supports code reuse and 
maintainability



Reproducible, Tool-Agnostic Workflows
Workflow Design for Reproducible Benchmarking
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Core component of the benchmarking framework is the JUBE Benchmarking Environment

JUBE Documentation: https://apps.fz-
juelich.de/jsc/jube/jube2/docu/index.html

Bartelheimer, N., Zhu, Z., and Neuwirth, S., 2024. Automated Network Performance 
Characterization for HPC Systems. International Journal of Networking and Computing.

https://apps.fz-juelich.de/jsc/jube/jube2/docu/index.html
https://apps.fz-juelich.de/jsc/jube/jube2/docu/index.html


Reproducible, Tool-Agnostic Workflows
Reproducible Benchmarking: Example Configuration
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Benchmark-independent, 
Platform-specific

Benchmark-specific, 
Platform-independent

Benchmark-specific, 
Platform-specific

platform.xml

likwid-specs.xml

platform-likwid-
specs.xml



Reproducible, Tool-Agnostic Workflows
Example: Automated Performance Characterization
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Roofline model for Himeno and HPCG results.

Himeno benchmark over 15 days / 2 measurements per day. RDMA point-to-point performance over 15 days / 2 measurements per day.

Heat map of the allocated nodes (overall benchmark runs).



Reproducible, Tool-Agnostic Workflows
I/O Roofline Characterization: Initial Concept

• Traditional Roofline Model…
− is based on looking at the relationship between work and traffic

− provides intuitive approach through simple bound and bottleneck analysis

• I/O Roofline Model is based on IOPS and the I/O bandwidth 
=> I/O interface specific, i.e., POSIX, MPIIO, etc.
− IOPS: number of reads and writes that a storage system can 

perform per second

− Bandwidth: total amount of data read or written per second

• X-axis: I/O Operational Intensity = Total I/O Operations

Read Bytes+Write Bytes

• Y-axis: 𝑃 = min Peak IOPS, Peak I/O Bandwidth × I/O Intensity

where 𝑃 is the attainable perf., 𝑃𝑝𝑒𝑎𝑘 is the peak perf., 𝑏 is the peak 

bandwidth, and 𝐼 is the arithmetic intensity
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Zhu, Z., and Neuwirth, S., 2023. Characterization 
of Large-Scale HPC Workloads With Non-Naïve 
I/O Roofline Modeling and Scoring. ICPADS’23.

Zhu, Z., Bartelheimer, N. and Neuwirth, S., 
2023. An Empirical Roofline Model for Extreme-
Scale I/O Workload Analysis. IPDPSW’23.



Reproducible, Tool-Agnostic Workflows
I/O Roofline Characterization: Workflow Implementation

• ERT4IO (Empirical Roofline Tool for I/O) provides automated 
I/O Roofline characterization
− Parameter extraction from Darshan logs
− Generates Roofline visualization

• Forwards results to MAWA-HPC framework
− Enables further data analysis 
− Preserves and shares knowledge via performance history database 

with the HPC community

• Applicable to various use cases
− Systems with different configurations and hardware can be 

compared and evaluated
− Intuitive estimation of an application’s I/O performance
− Identifying performance bottlenecks and anomalies
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ERT4IO

Micro- / Application Benchmarks
(e.g., IOR, HACC-IO, S3aSim,   

Characterization / Profiling Tools
(e.g., Darshan, Scalasca,   

Parameter Extraction

Visualization (e.g., Roofline Model)

Performance Model Database



Reproducible, Tool-Agnostic Workflows
Multi-dimensional Performance Modeling (WiP)

• Goal: provide a comprehensive view of application and system performance emerging workloads
• Multi-dimensional performance models, for example Roofline model, to account for multiple 

performance factors (e.g. network, compute power, and parallel I/O)
• Including time as an additional dimension, the Roofline model can provide insight into an 

application's performance over time, enabling the identification of performance anomalies
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Zhu, Z., Bartelheimer, N. and 
Neuwirth, S., 2023. MAWA-HPC: 
Modular and Automated Workload 
Analysis for HPC Systems. ISC’23.

Bartelheimer, N., Zhu, Z., and 
Neuwirth, S., 2023. Toward a 
Modular Workflow for Network 
Performance Characterization. 
IPDPSW’23.



Reproducible, Tool-Agnostic Workflows
Automated ML-Driven Performance Modeling Workflow
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Zhu, Z. and Neuwirth, S., 2024. Interactive and Tool-Agnostic ML-
Driven Workflow for Automated HPC Performance Modeling. SC’24.

Zhu, Z., Wang, C. and Neuwirth, S., 2025. Advancing HPC Performance Modeling with an 
Interactive, Automated and Tool-Agnostic ML-Driven Workflow. SSDBM’25. (to appear)



Reproducible, Tool-Agnostic Workflows
JUBE-ML Prototype Implementation

• Prototype extends the JUBE framework with 
support for automatic ML-based performance 
modeling and supports variety of ML algorithms

• JUBE-ML is enhanced by the sqlite-ml extension
• JUBE-ML stage provides four key functionalities: 

− Data analysis: insights into performance results 
(e.g., min, max, mean) and lambda functions

− Data preprocessing: cleans and filters data for ML, 
creates new tables with selected features & targets

− ML model training: applies ML models (regression 
or classification) to build a performance model

− Prediction: validates the model & enables different 
analysis scenarios, such as identifying irrelevant 
parameters and predicting system performance
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Reproducible, Tool-Agnostic Workflows
JUBE-ML Case Study: I/O Bandwidth

• Use Case: I/O bandwidth modeling and prediction to 
demonstrate the JUBE-ML workflow
− IOR benchmark to simulate various I/O workloads and 

generate performance data
− Linear regression: 25% for training, 75% for validation

• Despite the small training sample, the model pre-
dicts both minimum & maximum bandwidths well
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POSIX write performance prediction with JUBE-ML. POSIX read performance prediction with JUBE-ML.

Block size 64MB, 256MB, 512MB

Transfer size 1MB, 2MB, 4MB, 8MB

Lustre striping count 0, 2, 4, 8

Lustre striping size 1MB, 2MB, 4MB, 8MB

Nodes 1, 2, 4, 8

Tasks per node 1, 2, 4, 8



Toward Explainable and 
Verified HPC Performance

Bridging measurement and meaning through explainable models and verified traces
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Toward Explainable and Verified HPC Performance
Master Architectural Plan (MAP)
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• Derived from current TOP500 and IO500

• Comprehensive framework designed to 
encapsulate the evolution of HPC storage 
architectures

• Primary objective of MAP is to provide a 
standardized yet adaptable blueprint to 
align software and monitoring tools across 
various HPC configurations

• Graph-based representation of components 
and interconnects for modeling data flows 
in HPC systems
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Neuwirth, S. and Devarajan, H., Wang, C., and Lofstead, J.., 2025. XIO: Toward 
eXplainable I/O for HPC Systems. SSDBM’25. (to appear)



• Only a few paths are covered by user-space monitoring tools

• Need access to more levels of software stack:
− Multi-level software stack for high-level libraries

− Multi-level kernel stack to understand buffering and stack cost

− Multi-component to understand communication used for 
data movements

• DataCrumbs Approach: Low-Overhead Multi-Layer Profiling
− Lightweight tool using eBPF (or SystemTap)
− Attaching probes to user applications, middleware & kernel components

=> enabling transparent monitoring of relevant information
− Sampling aggregated kernel data at configurable intervals => I/O patterns, buffer states, and system interactions
− Correlating I/O function calls with kernel stack events, exposing bottlenecks such as page cache inefficiencies, 

metadata overhead, and system call latencies

Toward Explainable and Verified HPC Performance
DataCrumbs: Comprehensive I/O Profiling
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Toward Explainable and Verified HPC Performance
Initial Evaluation: DataCrumbs vs. Darshan DXT

• Write operations (POSIX I/O): 82% of execution time 
spent on OS page cache management, highlighting 
impact of dirty page flushing

• Unbuffered read operations: High overhead due to 
frequent page cache misses

• Buffered read operations use different kernel functions
• Comparison of DataCrumbs and Darshan highlights 

need for visibility within kernel file system stack to 
understand performance variability within applications
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Comparison of IOR performance breakdown with 
DataCrumbs and Darshan for two use cases.

Performance breakdown with DataCrumbs for 
different read and write operations.

Neuwirth, S. and Devarajan, H., Wang, C., and Lofstead, J.., 2025. XIO: Toward eXplainable I/O for HPC Systems. SSDBM’25. (to appear)



Toward Explainable and Verified HPC Performance
VerifyIO: Verifying Parallel I/O Consistency Semantics

What is VerifyIO? An open-source tool for trace-based 
verification of I/O consistency semantics in HPC applications.

Why does it matter? Emerging file systems and libraries 
relax consistency models (e.g., MPI-IO, Session), which can 
silently break application correctness.
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Goals:
• Ensure correctness on 

relaxed consistency systems
• Diagnose portability issues

across backends
• Support future file systems

beyond POSIX
• Enable developers to detect 

and fix semantic violations

Wang, C., Zhu, Z., Mohror, K., Neuwirth, S., and Snir, M., 2025. VerifyIO: 
Verifying Adherence to Parallel I/O Consistency Semantics. IPDPS’25. (to appear)



Toward Explainable and Verified HPC Performance
FlexBench: From Traces to Tunable I/O Benchmarks

FlexBench is…
• A benchmark generator that reconstructs and manipulates I/O 

patterns from execution traces
• Built on top of Recorder+, leveraging Context-Free Grammars 

(CFGs) to compress and describe I/O behavior

Why do we need FlexBench?
• Traditional tracing tools like Darshan or Recorder capture 

detailed I/O but lack replay and what-if capabilities
• FlexBench enables users to replay, analyze, and tune the I/O 

behavior of applications, even without modifying code

Core Goals:
1. Use CFGs to precisely describe application I/O patterns
2. Reproduce original I/O performance from filtered traces
3. Expose optimization opportunities (e.g., parameter tuning)
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Step 1: Recording the Full Trace

Step 2: Filtering for a Clean Trace

Step 3: Deriving the Benchmark

Step 4: Performance Optimization



Conclusions
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Conclusions
Open Problems and Community Challenges
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Benchmarking Trust
• What does it mean to trust a performance 

result?

• Can we quantify trust the way we quantify 
performance?

Metadata Standardization
• Can we converge on trace metadata schemas 

across tools?

• How do we ensure trace context is captured and 
preserved?

From Metrics to Meaning
• What constitutes a verified insight?

• Can we establish common ground between 
correctness verification and performance 
validation?

Reproducibility at Scale
• How do we scale reproducibility beyond case 

studies?

• What community infrastructure (e.g. shared 
testbeds, curated traces) do we need?

Trustworthy performance insights are sustainable insights.



Thank you for your Attention!

Dr. Sarah M. Neuwirth
Professor of Computer Science
Johannes Gutenberg University Mainz 
Email: neuwirth@uni-mainz.de 
Website: https://www.hpca-group.de/ 
NHR South-West HPC Center: https://nhrsw.de/ 

Building a Future of HPC Performance Engineering Rooted in Data, Tools, and Trust • ©Sarah M. Neuwirth • Johannes Gutenberg University Mainz 31

mailto:neuwirth@uni-mainz.de
https://www.hpca-group.de/
https://nhrsw.de/

	Slide 1: Building a Future of HPC Performance Engineering Rooted in Data, Tools, and Trust
	Slide 2: Motivation Heterogeneous and Complex HPC Infrastructures
	Slide 3: Vision: From Data to Decisions Holistic Monitoring for Intelligent HPC Operations
	Slide 4
	Slide 5: Diagnosing the Performance Trust Gap The Traditional Performance Optimization Cycle
	Slide 6: Diagnosing the Performance Trust Gap Example: Parallel I/O Stack and its Performance Factors
	Slide 7: Diagnosing the Performance Trust Gap Example: Status of I/O Characterization Tools
	Slide 8: Diagnosing the Performance Trust Gap Fragile Pipelines: Tool-Driven, Not Insight-Driven
	Slide 9: Diagnosing the Performance Trust Gap Why We Need to Rethink HPC Performance Engineering
	Slide 10
	Slide 11: Reproducible, Tool-Agnostic Workflows  Goal: Holistic & Automated Monitoring and Analysis Cycle
	Slide 12: Reproducible, Tool-Agnostic Workflows Reproducible Benchmarking and Measurement
	Slide 13: Reproducible, Tool-Agnostic Workflows Reproducible Benchmarking: Integration is Key
	Slide 14: Reproducible, Tool-Agnostic Workflows Workflow Design for Reproducible Benchmarking
	Slide 15: Reproducible, Tool-Agnostic Workflows Reproducible Benchmarking: Example Configuration
	Slide 16: Reproducible, Tool-Agnostic Workflows Example: Automated Performance Characterization
	Slide 17: Reproducible, Tool-Agnostic Workflows I/O Roofline Characterization: Initial Concept
	Slide 18: Reproducible, Tool-Agnostic Workflows I/O Roofline Characterization: Workflow Implementation
	Slide 19: Reproducible, Tool-Agnostic Workflows Multi-dimensional Performance Modeling (WiP)
	Slide 20: Reproducible, Tool-Agnostic Workflows Automated ML-Driven Performance Modeling Workflow
	Slide 21: Reproducible, Tool-Agnostic Workflows JUBE-ML Prototype Implementation
	Slide 22: Reproducible, Tool-Agnostic Workflows JUBE-ML Case Study: I/O Bandwidth
	Slide 23
	Slide 24: Toward Explainable and Verified HPC Performance Master Architectural Plan (MAP)
	Slide 25: Toward Explainable and Verified HPC Performance DataCrumbs: Comprehensive I/O Profiling
	Slide 26: Toward Explainable and Verified HPC Performance Initial Evaluation: DataCrumbs vs. Darshan DXT
	Slide 27: Toward Explainable and Verified HPC Performance VerifyIO: Verifying Parallel I/O Consistency Semantics
	Slide 28: Toward Explainable and Verified HPC Performance FlexBench: From Traces to Tunable I/O Benchmarks
	Slide 29
	Slide 30: Conclusions Open Problems and Community Challenges
	Slide 31: Thank you for your Attention!

